Tuesday, July 20, 2010

"Metrics for Thin Film Solar CIGS Company Comparisons" (FSLR; ASTI; DSTI) Miasole; Nanosolar

From AltEnergyStocks:
Many people ask me, “which CIGS company is going to emerge as winner in the race towards high efficiency thin film PV’s? To provide an enlightened perspective to the question, some historical perspectives are needed.

First Solar (FSLR) has helped the Thin Film PV Industry by proving that respectable solar to electric area efficiencies can be achieved in a low cost manufacturing processes, with respectable performance over time. First Solar’s technology is cadmium telluride (CdTe) on glass. Previously, amorphous silicon was the thin film leader, with the highest commercially available thin film area efficiencies; currently they have a challenge in today’s low cost, higher efficiency, crystalline PV market. CIGS (copper, indium, gallium and selenium) currently holds the world efficiency record for a single layer thin film PV deposition in a laboratory setting. The promise of CIGS is that it can surpass the commercial manufacturing efficiency of the other thin film technologies in the near term. 

In a recent presentation at Intersolar in San Francisco by David Eaglesham of First Solar showed their CapEx (the capital expense for the plant and manufacturing equipment) at $0.75/W, roadmapping (RM, future expected levels) to $0.65/W; manufacturing (mfg) costs (including depreciation and recycling) currently at $0.81/W, RM to $0.52/W; and current area efficiencies at 11%, RM to 14%. So a CIGS-on-glass company will need to compete with these current and future benchmarks to be at least competitive with First Solar. Flexible CIGS might have some greater market opportunities discussed below....

...There is an additional economic metric which is required of PV systems, called balance of systems costs (BOS). Most PV on glass has similar BOS, between $1 and $3 a watt system level installation costs. The lower the module efficiency, the higher the area related BOS costs. Comparing 10% and 20% efficient modules both with area BOS of $2/W, the lower efficiency module has twice the costs because it uses twice the area. As the price of modules is reduced, the BOS becomes a more dominant factor in the installed system costs. A Deutsche Bank (DB) report expresses the concepts better than can be accomplished here. {July 9, 2007, DB “Technology and economics; thin films and crystalline silicon”} The costs are no longer valid, but the technology discussions are valuable. All manufacturers are being judged on their products utilization in a system that provides long term performance, expressed in the levelized cost of energy from the lifetime costs of the system. 

From the previously mentioned DB report: “CIGS on flexible substrates offers a potential low cost, higher conversion efficiency modules, but has yet to enter commercial production.” And “We believe that flexible substrate CIGS based modules could have excellent applicability for building integrated PV (BIPV) applications as well as other applications like consumer electronics, and portable devices.” Be looking for the flexible CIGS products which have both TUV and UL certifications indicating successful completion of both long-term performance and safety testing,,,MORE
See also:  
*GE had been in silicon photovoltaic but sold the plant to Taiwan-based Motech in December. They are now focused on Cadmium Telluride in a big way, even as First Solar heads toward CIGS:
Watch Out First Solar: "GE outlines R&D efforts with CdTe thin-film technology" (FSLR; GE)
Hapoalim Cuts First Solar Target to $65 on Cadmium Telluride Risk; It Won't Matter and Probably Sets an Intermediate Low (FSLR)

Was Solyndra the Reason Goldman Sachs Threw First Solar Under the Bus? (FSLR; GS; SPWRA)
Goldman Sachs and the Solar Land Rush (FSLR; GS)