This isn't very fashion-forward or breakthrough technology but it aims directly at Tesla's Powerwall business and possibly at companies like Bloom Energy with their stationary fuel cell business.
note: we really, really don't care for the hypesters at Bloom.
From IEEE Spectrum:
Lithium-ion batteries are nowhere close to easing their dominion in the rechargeable battery market. However, development is speeding up on a competing chemistry for larger-scale applications—i.e. not EVs or consumer electronics—the sodium-ion battery.
Researchers have been promising to make sodium batteries viable for years. The technology might finally be catching up to its promise, with a couple companies now starting commercial deliveries.
In September 2020, the Department of Energy’s Advanced Research Projects Agency–Energy awarded Santa Clara, California-based Natron Energy USD $19.9 million as part of a new program to fast-track technologies, with the goal of advancing their commercialization efforts. The batteries are now in low-volume commercial production, says VP of Sales Jack Pouchet. Natron’s first customers are data centers and telecom companies.
“From a pure performance point-of-view, sodium-ion batteries are not attractive for portable electronics or electric vehicles,” says K. M. Abraham, research professor at Northeastern University and CTO of lithium battery consulting firm E-KEM Sciences. Lithium-ion batteries boast a higher energy density than sodium-ions, which means a compact lithium-ion will have a longer run time between charges. So far, sodium-ions have demonstrated about half the energy density of lithium, which can reach 285 Wh/kg, he says.
But sodium-ion batteries could give lithium-ions a run for their money in stationary applications like renewable energy storage for homes and the grid or backup power for data centers, where cost is more important than size and energy density. Based on currently available information, Abraham projects the cost of sodium-ion batteries to be about 10–20 percent less than lithium-ion.
The biggest thing going for sodium batteries is their use of abundant, cheap, and benign materials. There is over one-thousand times more sodium than lithium in the Earth’s crust. It also costs less to extract and purify. Moreover, sodium metal oxide cathodes typically used in batteries—the anodes are carbon just like lithium-ion batteries—can be made from plentiful metals such as iron and manganese. Lithium-ion cathodes, by contrast, use cobalt, a metal with limited geological reserves and an iffy supply chain centered on a handful of countries. And other batteries such as lead-acid and nickel-cadmium contain toxic metals. “The main attraction of sodium is sustainability,” Abraham says....
....MUCH MORE