Wednesday, September 30, 2020

"Elon Musk's Starlink Is A Very Big Deal"

I had intended to add this to the post immediately below but decided to go with the video.
A repost from November 2019:

From Casey Handmer's Blog:
Part of my series countering misconceptions in space journalism.

Starlink, SpaceX’s plan to serve internet via tens of thousands of satellites, is a staple in the space press, with articles appearing every week on the latest developments. The broad schema is clear and, thanks to filings with the FCC, a sufficiently well motivated individual (such as your humble servant) can deduce a great deal of detail. Despite this, there is still an unusually high degree of confusion around this new technology, even among expert commentators. It is not uncommon to read articles comparing Starlink to OneWeb and Kuiper (among others), as though they were all equal competitors. It is not uncommon to read of well-meaning concerns regarding space junk, space law, regulation, and harm to astronomy. It is my hope that by the end of this rather lengthy post, the reader will be both better informed and more excited by Starlink.

My previous post on Starship struck an unexpected chord with my ordinarily sparse readership. In it, I explained how Starship would greatly lengthen SpaceX’s lead over competing launch providers and, at the same time, provide a mechanism for the redevelopment of space. The subtext here is that the conventional satellite industry was unable to keep up with SpaceX’s steadily increasing capacity and decreasing costs on the Falcon family of launchers, leaving SpaceX in a difficult position. On the one hand, it was saturating a market worth, at most, a few billion a year. And on the other, it was developing an insatiable appetite for cash to build an enormous rocket with almost no paying customers, and then fly thousands of them to Mars for no immediate economic return.

The answer to these twin problems is Starlink. By developing their own satellites, SpaceX could create and define a new market for highly capable, democratized space communication access, provide a revenue stream and payloads for their own rocket even as they self-cannibalized, and eventually unlock trillions in economic value. Do not underestimate the scale of Elon’s ambition. There are only three trillion dollar industries in existence: energy, high speed transport, and communications. Despite common misconceptions, space mining, lunar water, and space-based solar power are not viable businesses. Elon has a play in energy with Tesla, but only communications provides a reliable, deep market for satellites and launch.

Elon Musk’s first space-related idea was to spend $80m on a philanthropic mission to grow a plant on a Mars lander. Building a Mars city will cost maybe 100,000 times as much. Starlink is Elon’s main bet to deliver the ocean of gold needed to philanthropically build a self-sustaining city on Mars.

I have been planning some version of this post for a very long time but until last week, I didn’t quite have all the pieces in place. Then SpaceX President Gwynne Shotwell gave an incredible interview with Rob Baron, covered by Michael Sheetz for CNBC in a glorious Twitter thread and a couple of articles. This interview cast into sharp relief the difference in approach between SpaceX’s take on communications satellites and everyone else.

Starlink was born conceptually in 2012 when SpaceX realized that its customers, primarily comsat providers, had better margins than they did. Launch providers charge famously unreasonable rates to place satellites in orbit, and yet somehow there was a piece of the action that they had missed? Elon dreamed of an internet constellation and, unable to resist a near-impossible technical challenge, got the ball rolling. The Starlink development process has had its difficulties but by the end of this post you, the reader, will probably be surprised just how few difficulties there were, given the magnitude of the underlying vision.

Why do we need an enormous constellation of satellites to provide internet? Why now?
In just my lifetime the internet has grown from an academic curiosity to the single most transformational piece of infrastructure ever built. This isn’t the topic for an extended discussion of the internet, but I will assume that global demand for internet and the wealth it brings will continue to rapidly grow by about 25% a year.

But today, almost all of us get our internet from a tiny handful of geographically-isolated monopolies. In the US, AT&T, Time Warner, Comcast, and a handful of smaller players have divided up the country to avoid competition, charge exorbitant rates for bad service, and bask in near universal hatred.

There is a compelling reason, besides overwhelming greed, for anti-competitive behavior among internet service providers. The underlying infrastructure of the internet, microwave cell towers and optical fiber, are extremely expensive to build. It’s easy to forget just how miraculous the data-transfer properties of the internet are. My grandmother’s first job was as a Morse code operator during the Second World War – a medium that competed with homing pigeons for preeminent strategic value! For most of us, riding the information superhighway is so disembodied, so incorporeal, that we forget that those bits have to traverse our physical world with all its borders, rivers, mountains, oceans, storms, natural disasters, and other annoyances. Neal Stephenson wrote the definitive essay on cybertourism when the first internet-dedicated oceanic optical fiber cable was laid, all the way back in 1996. His characteristic sharp prose ably describes the sheer cost and difficulty of building these wretched lolcat pipes. For much of the 2000s, so much cable was being laid that the rate of deployment, combined across multiple ships, was supersonic.

At the time I worked in a optics lab and (IIRC) we demonstrated a then record-breaking multiplexing record of 500Gb/s. Limitations in electronics meant that each fiber was carrying something like 0.1% of its theoretical maximum capacity. 15 years later, we’re approaching those limits. Beyond a certain point, transmitting more data down a given fiber will melt it, and that time is not too far off.....