Saturday, August 17, 2019

"Matters of Tolerance"

From the New York review of Books, October 25, 2018:
James Gleick
October 25, 2018 Issue

The Perfectionists: How Precision Engineers Created the Modern World
by Simon Winchester
Harper, 395 pp., $29.99
Scientists and engineers recognize an elusive but profound difference between precision and accuracy. The two qualities often go hand in hand, of course, but precision involves an ideal of meticulousness and consistency, while accuracy implies real-world truth. When a sharpshooter fires at a target, if the bullets strike close together—clustered, rather than spread out—that is precise shooting. But the shots are only accurate if they hit the bull’s eye. A clock is precise when it marks the seconds exactly and unvaryingly but may still be inaccurate if it shows the wrong time. Perversely, we sometimes value precision at the expense of accuracy.

Simon Winchester, whose The Perfectionists ventures a history of this abstract concept, offers another way of looking at the distinction: a Rolls-Royce automobile, the 1984 Camargue model. In the course of a story filled with wonderful machines of every type, Winchester reveals himself to be something of a Rolls-Royce fanboy, but he declares this one to have been an ugly behemoth:
While the engineers had lovingly made yet another model of a car that enjoyed great precision in every aspect of its manufacture, those who had commissioned and designed and marketed and sold it had no feel for the accuracy of their decisions.
Winchester is a longtime journalist turned author, a meticulous researcher and catholic thinker who has written superb books about The Oxford English Dictionary, the Krakatoa eruption, the birth of modern geology, and (separately) the Atlantic and Pacific Oceans. Compared with topics like those, precision may seem an odd choice. What does it mean to write a history of so abstract a concept? Where does it even begin?

First Winchester needs to convince us that precision is a thing. It is, he tells us, a component of machines, and for that matter “an essential component of the modern world,…invisible, hidden in plain sight.” Besides being a component, it is a “phenomenon” that has transformed human society. We take it for granted, like the air we breathe, though we are suckers for precision snow tires and precision beard trimmers and we aspire to precision medicine and precision tattoo removal. It is “an essential aspect of modernity that makes the modern possible,” Winchester writes:
Precision is an integral, unchallenged, and seemingly essential component of our modern social, mercantile, scientific, mechanical, and intellectual landscapes. It pervades our lives entirely, comprehensively, wholly.
Which of the sciences are the most precise? Biology is messy, a science of divergence and variation, of creatures in all shapes and sizes. “Astronomical precision” is an oxymoron, astronomy being full of approximations and guesses piled atop one another—although the instruments of astronomy are tools of increasing and, lately, astounding precision. Mathematical precision trumps astronomical precision; mathematics is precise by definition. Winchester is not exploring the world of abstractions, though, but the real world, where people make things. His father was a precision engineer who turned metal into the most perfect machinery possible. Wood is nice but imprecise. The story of precision begins with metal.
And the story begins, according to Winchester, at a specific place and time: North Wales, “on a cool May day in 1776.” The Age of Steam was getting underway. So was the Industrial Revolution—almost but not quite the same thing. In Scotland, James Watt was designing a new engine to pump water by means of the power of steam. In England, John “Iron-Mad” Wilkinson was improving the manufacture of cannons, which were prone to exploding, with notorious consequences for the sailors manning the gun decks of the navy’s ships. Rather than casting cannons as hollow tubes, Wilkinson invented a machine that took solid blocks of iron and bored cylindrical holes into them: straight and precise, one after another, each cannon identical to the last. His boring machine, which he patented, made him a rich man....
....Any assessment of ancient technology has to include, however, a single extraordinary discovery—an archaeological oddball the size of a toaster, named the “Antikythera mechanism,” after the island near Crete where Greek sponge divers recovered it in 1900 from a shipwreck 150 feet deep. Archaeologists were astonished to find, inside a shell of wood and bronze dated to the first or second century BC, a complex clockwork machine comprising at least thirty bronze dials and gears with intricate meshing teeth. In the annals of archaeology, it’s a complete outlier. It displays a mechanical complexity otherwise unknown in the ancient world and not matched again until fourteenth-century Europe. To call it “clockwork” is an anachronism: clocks came much later. Yet the gears seem to have been made—by hand—to a tolerance of a few tenths of a millimeter.....
.... MUCH MORE