Sunday, August 18, 2019

"AI That Evolves in the Wild": A Talk By George Dyson

From Edge.org:

...AI THAT EVOLVES IN THE WILD
GEORGE DYSON: I’m not a scientist. I’ve never done science. I dropped out of high school. But I tell stories. Ian tells stories that can take us into the future wherever he wants to go, and I go into the past and find the stories that people forgot.

Alison Gopnik said how nobody reads past the one sentence in Turing’s 1950 paper. They never read past his 1936 paper to his 1939 “Systems of Logic Based on Ordinals,” which is much more interesting. It’s about non-deterministic computers, not the universal Turing machine but the second machine he wrote his thesis on in Princeton, which was the oracle machine—a non-deterministic machine. Already he realized by then that the deterministic machines were not that interesting. It was the non-deterministic machines that were interesting. Similarly, we talk about the von Neumann architecture, but von Neumann only has one patent, and that patent is for non-von Neumann architecture. It’s for a neuromorphic computer that can do anything, and he explains that, because to get a patent you have to show what it can do. And nobody reads that patent.

The measure of a good story is that it gets better as it’s repeated by other people, such as Danny’s story about the Songs of Eden and how you can look at the development of language and consciousness from the point of the view of the songs themselves, these strings of language. We’re obsessed with these other minds that are going into technology. There’s a whole other track where you could have a mind and intelligence that has no technology at all. Freeman always pointed out that the search for extraterrestrial intelligence is wrong, that really what we are looking for is extraterrestrial technology because we can see it. Intelligence and technology are different things. There’s a parallel to the songs that went to the apes becoming us, and the songs that went into the oceans and became whales, which have highly developed songs and are raised by their maternal 100-year-old grandmothers. Whales have no technology, but obviously they have very advanced brains, five, six, eight times the size of ours.

I’m interested not in domesticated AI—the stuff that people are trying to sell. I'm interested in wild AI—AI that evolves in the wild. I’m a naturalist, so that’s the interesting thing to me. Thirty-four years ago there was a meeting just like this in which Stanislaw Ulam said to everybody in the room—they’re all mathematicians—"What makes you so sure that mathematical logic corresponds to the way we think?" It’s a higher-level symptom. It’s not how the brain works. All those guys knew fully well that the brain was not fundamentally logical.

We’re in a transition similar to the first Macy Conferences. The Teleological Society, which became the Cybernetics Group, started in 1943 at a time of transition, when the world was full of analog electronics at the end of World War II. We had built all these vacuum tubes and suddenly there was free time to do something with them, so we decided to make digital computers. And we had the digital revolution. We’re now at exactly the same tipping point in history where we have all this digital equipment, all these machines. Most of the time they’re doing nothing except waiting for the next single instruction. The funny thing is, now it’s happening without people intentionally. There we had a very deliberate group of people who said, "Let’s build digital machines." Now, I believe we are building analog computers in a very big way, but nobody’s organizing it; it’s just happening.
If you look at the most interesting computation being done on the Internet, most of it now is analog computing, analog in the sense of computing with continuous functions rather than discrete strings of code. The meaning is not in the sequence of bits; the meaning is just relative. Von Neumann very clearly said that relative frequency was how the brain does its computing. It's pulse frequency coded, not digitally coded. There is no digital code.

In mathematics there’s this deep, old problem called the continuum hypothesis. We have an infinite number of different infinities, but they divide into only two kinds: countable infinities and uncountable infinities. My analogy for that is how at the end of a conference when you look for a t-shirt, there are only extra small t-shirts and extra large. There are no medium t-shirts. The continuum hypothesis—and there is a difference between being true and being provable—has not been proved. It says you will never find a medium-sized infinity. All the infinities belong to one side or the other....
....MUCH MORE