Thursday, August 22, 2024

"IBM’s Big Bet on the Quantum-Centric Supercomputer"

From IEEE Spectrum, August 21 (the writers are employees of IBM):

Recent advances point the way to useful classical-quantum hybrids

Back in June 2022, Oak Ridge National Laboratory debuted Frontier—the world’s most powerful supercomputer. Frontier can perform a billion billion calculations per second. And yet there are computational problems that Frontier may never be able to solve in a reasonable amount of time.

Some of these problems are as simple as factoring a large number into primes. Others are among the most important facing Earth today, like quickly modeling complex molecules for drugs to treat emerging diseases, and developing more efficient materials for carbon capture or batteries.

However, in the next decade, we expect a new form of supercomputing to emerge unlike anything prior. Not only could it potentially tackle these problems, but we hope it’ll do so with a fraction of the cost, footprint, time, and energy. This new supercomputing paradigm will incorporate an entirely new computing architecture, one that mirrors the strange behavior of matter at the atomic level—quantum computing.

For decades, quantum computers have struggled to reach commercial viability. The quantum behaviors that power these computers are extremely sensitive to environmental noise, and difficult to scale to large enough machines to do useful calculations. But several key advances have been made in the last decade, with improvements in hardware as well as theoretical advances in how to handle noise. These advances have allowed quantum computers to finally reach a performance level where their classical counterparts are struggling to keep up, at least for some specific calculations.

For the first time, we here at IBM can see a path toward useful quantum computers, and we can begin imagining what the future of computing will look like. We don’t expect quantum computing to replace classical computing. Instead, quantum computers and classical computers will work together to run computations beyond what’s possible on either alone. Several supercomputer facilities around the world are already planning to incorporate quantum-computing hardware into their systems, including Germany’s Jupiter, Japan’s Fugaku, and Poland’s PSNC. While it has previously been called hybrid quantum-classical computing, and may go by other names, we call this vision quantum-centric supercomputing.

A Tale of Bits and Qubits
At the heart of our vision for a quantum-centric supercomputer is the quantum hardware, which we call a quantum processing unit (QPU). The power of the QPU to perform better than classical processing units in certain tasks comes from an operating principle that’s fundamentally different, one rooted in the physics of quantum mechanics.

In the standard or “classical” model of computation, we can reduce all information to strings of binary digits, bits for short, which can take on values of either 0 or 1. We can process that information using simple logic gates, like AND, OR, NOT, and NAND, which act on one or two bits at a time. The “state” of a classical computer is determined by the states of all its bits. So, if you have N bits, then the computer can be in just one of 2N states. 

But a quantum computer has access to a much richer repertoire of states during computation. A quantum computer also has bits. But instead of just 0 and 1, its quantum bits— qubits—via a quantum property known as superposition, represent 0, 1, or a linear combination of both. While a digital computer can be in just one of those 2N states, a quantum computer can be in many logical states at once during the computation. And the superpositions the different qubits are in can be correlated with one another in a fundamental way, thanks to another quantum property known as entanglement. At the end of the computation, the qubit assumes just one state, chosen based on probabilities generated during the running of the quantum algorithm.

It’s not obvious how this computing paradigm can outperform the classical one. But in 1994, Peter Shor, a mathematician at MIT, discovered an algorithm that, using the quantum-computing paradigm, could divide large numbers into their prime factors exponentially faster than the best classical algorithm. Two years later, Lov Grover discovered a quantum algorithm that could find a particular entry in a database much faster than a classical one could.

Perhaps most importantly, since quantum computers follow the laws of quantum mechanics, they are the right tool for simulating the fundamentally quantum phenomena of our world, such as molecular interactions for drug discovery or materials design....

....MUCH MORE