From MIT's Technology Review, April 15, 2014:
A Brazilian neuroscientist says brain-controlled robotics will let the paralyzed walk again.Our April d1, 2014 post "Shortly before 5pm local time on 12 June 2014, a young paraplegic Brazilian will stand up from a wheelchair, walk over to midfield, and take the first kick of the 2014 World Cup" has links to earlier posts and begins:
In less than 60 days, Brazil will begin hosting soccer’s 2014 World Cup, even though workers are still hurrying to pour concrete at three unfinished stadiums. At a laboratory in São Paulo, a Duke University neuroscientist is in his own race with the World Cup clock. He is rushing to finish work on a mind-controlled exoskeleton that he says a paralyzed Brazilian volunteer will don, navigate across a soccer pitch using his or her thoughts, and use to make the ceremonial opening kick of the tournament on June 12.
The project, called Walk Again, is led by Miguel Nicolelis, a 53-year-old native of Brazil and one of the biggest names in neuroscience. If it goes as planned, the kick will be a highly public display of research into brain-machine interfaces, a technology that aims to help paralyzed people control machines with their thoughts and restore their ability to get around.
“It’s going to be like putting a man on the moon—it’s conquering a level of audacity and innovation that the people outside Brazil aren’t used to associating with Brazil,” Nicolelis has told audiences. The kick, he has said, “will inaugurate a new era of neuroscience, [that of] neuroengineering.”
But the Walk Again project is drawing doubters. Saying the demonstration is as much publicity stunt as science, they question whether it will illustrate any real degree of thought control. That’s because it relies on a fairly old, imprecise brain-recording technology called EEG, or electroencephalography.
At least three other research groups have recently published reports of EEG-controlled exoskeletons. Yet so far, none have managed to do much more than send a start or stop signal. They let the robotic harness do the rest of the work on a preset trajectory, with plenty of outside assistance in balancing.
That suggests that the level of brain control could be disappointingly minimal, even if it’s presented as a breakthrough on TV. “What would happen if a gust of wind moved the ball by three centimeters right before the demo began?” asks Andrew Schwartz, a neuroprosthetics researcher at the University of Pittsburgh. “Everything you’ll see in the demo will be fancy robotics, not brain control, and it will probably all be preprogrammed.”...MORE
Long time readers know Dr., Dr.* Nicolelis is a bit of a showman.*M.D., PhD, hence the double Doc.
And probably going to win the Medicine or Physiology Nobel....