Saturday, November 21, 2015

"Critical Slowing Down" As A Warning Signal In Complex Systems

From the Simons Foundation's Quanta Magazine:

Complex Systems
Nature’s Critical Warning System
Scientists are homing in on a warning signal that arises in complex systems like ecological food webs, the brain and the Earth’s climate. Could it help prevent future catastrophes?
 [No Caption]
Nestled in the northern Wisconsin woods, Peter Lake once brimmed with golden shiners, fatheads and other minnows, which plucked algae-eating fleas from the murky water. Then, seven years ago, a crew of ecologists began stepping up the lake’s population of predatory largemouth bass. To the 39 bass already present, they added 12, then 15 more a year later, and another 15 a month after that. The bass hunted down the minnows and drove survivors to the rocky shoreline, which gave fleas free rein to multiply and pick the water clean. Meanwhile, bass hatchlings — formerly gobbled up by the minnows — flourished, and in 2010, the bass population exploded to more than 1,000. The original algae-laced, minnow-dominated ecosystem was gone, and the reign of bass in clear water began.
Today, largemouth bass still swim rampant. “Once that top predator is dominant, it’s very hard to dislodge,” said Stephen Carpenter, an ecologist at the University of Wisconsin, Madison, who led the experiment. “You could do it, but it’s gonna cost you.”

The Peter Lake experiment demonstrated a well-known problem with complex systems: They are sensitive beasts. Just as when the Earth periodically plunges into an ice age, or when grasslands turn to desert, fisheries suddenly collapse, or a person slumps into a deep depression, systems can drift toward an invisible edge, where only a small change is needed to touch off a dramatic and often disastrous transformation. But systems that exhibit such “critical transitions” tend to be so complicated and riddled with feedback loops that experts cannot hope to calculate in advance where their tipping points lie — or how much additional tampering they can withstand before snapping irrevocably into a new state.

At Peter Lake, though, Carpenter and his team saw the critical transition coming. Rowing from trap to trap counting wriggling minnows and harvesting other data every day for three summers, the researchers captured the first field evidence of an early-warning signal that is theorized to arise in many complex systems as they drift toward their unknown points of no return.
The signal, a phenomenon called “critical slowing down,” is a lengthening of the time that a system takes to recover from small disturbances, such as a disease that reduces the minnow population, in the vicinity of a critical transition. It occurs because a system’s internal stabilizing forces — whatever they might be — become weaker near the point at which they suddenly propel the system toward a different state.

Since the Peter Lake study, interest in critical slowing down has spread across disciplines, bringing with it the hope of foreseeing and preventing a plethora of catastrophic failures. As theoreticians refine their understanding of the phenomenon, experimentalists are gathering further evidence of it in a mix of real-world systems.

“We have all these complex systems like the brain, the climate, ecosystems, the financial market, that are really difficult to understand, and we will probably never fully understand them,” said Marten Scheffer, a complex systems theorist at Wageningen University in the Netherlands. “So it’s really kind of a small miracle that across these very different systems, we could find these universal indicators of how close they are to a threshold.”

Experts stress that the study of critical slowing down is in its early stages, and not yet ready to serve as a call to action in the management of real systems. In some cases, responding to the signal might save an endangered species, a patient’s mental health, or an industry. But in other types of complex systems that have been studied mathematically — such as food webs that, unlike Peter Lake’s, are so chaotic that they do not exhibit critical transitions at all — the same signal might be a false alarm. Carpenter, who has returned to Peter Lake for a new experiment, says much more research is needed to sort out these different cases. In the meantime, he said, “don’t try this at home.”...
....MUCH MORE