Sunday, May 1, 2022

Where Is Artificial Intelligence Going From Here: One Of The Gurus Speaks

The writer, Berkeley's Stuart Russell, really is way up toward the tippy-top of the pile of people who think about such things.

From The American Academy of Arts and Sciences' Dædalus journal, Spring 2022 issue:

Abstract
Since its inception, AI has operated within a standard model whereby systems are designed to optimize a fixed, known objective. This model has been increasingly successful. I briefly summarize the state of the art and its likely evolution over the next decade. Substantial breakthroughs leading to general-purpose AI are much harder to predict, but they will have an enormous impact on society. At the same time, the standard model will become progressively untenable in real-world applications because of the difficulty of specifying objectives completely and correctly. I propose a new model for AI development in which the machine’s uncertainty about the true objective leads to qualitatively new modes of behavior that are more robust, controllable, and deferential.

*****

The central technical concept in AI is that of an agent: an entity that perceives and acts.1 Cognitive faculties such as reasoning, planning, and learning are in the service of acting. The concept can be applied to humans, robots, software entities, corporations, nations, or thermostats. AI is concerned principally with designing the internals of the agent: mapping from a stream of raw perceptual data to a stream of actions. Designs for AI systems vary enormously depending on the nature of the environment in which the system will operate, the nature of the perceptual and motor connections between agent and environment, and the requirements of the task. AI seeks agent designs that exhibit “intelligence,” but what does that mean?

In answering this question, AI has drawn on a much longer train of thought concerning rational behavior: what is the right thing to do? Aristotle gave one answer: “We deliberate not about ends, but about means. . . . [We] assume the end and consider how and by what means it is attained, and if it seems easily and best produced thereby.”2 That is, an intelligent or rational action is one that can be expected to achieve one’s objectives.

This line of thinking has persisted to the present day. In the seventeenth century, theologian and philosopher Antoine Arnauld broadened Aristotle’s theory to include uncertainty in a quantitative way, proposing that we should act to maximize the expected value of the outcome (that is, averaging the values of different possible outcomes weighted by their probabilities).3 In the eighteenth century, Swiss mathematician Daniel Bernoulli refined the notion of value, moving it from an external quantity (typically money) to an internal quantity that he called utility.4 French mathematician Pierre Rémond de Montmort noted that in games (decision situations involving two or more agents) a rational agent might have to act randomly to avoid being second-guessed.5 And in the twentieth century, mathematician John Von Neumann and economist Oskar Morgenstern tied all these ideas together into an axiomatic framework: rational agents must satisfy certain properties such as transitivity of preferences (if you prefer A to B and B to C, you must prefer A to C), and any agent satisfying those properties can be viewed as having a utility function on states and choosing actions that maximize expected utility.6

As AI emerged alongside computer science in the 1940s and 1950s, researchers needed some notion of intelligence on which to build the foundations of the field. Although some early research was aimed more at emulating human cognition, the notion that won out was rationality: a machine is intelligent to the extent that its actions can be expected to achieve its objectives. In the standard model, we aim to build machines of this kind; we define the objectives and the machine does the rest. There are several different ways in which the standard model can be instantiated. For example, a problem-solving system for a deterministic environment is given a cost function and a goal criterion and finds the least-cost action sequence that leads to a goal state; a reinforcement learning system for a stochastic environment is given a reward function and a discount factor and learns a policy that maximizes the expected discounted sum of rewards. This general approach is not unique to AI. Control theorists minimize cost functions, operations researchers maximize rewards, statisticians minimize an expected loss function, and economists maximize the utility of individuals or the welfare of groups.

Within the standard model, new ideas have arisen fairly regularly since the 1950s, leading eventually to impressive real-world applications. Perhaps the oldest established area of AI is that of combinatorial search, in which algorithms consider many possible sequences of future actions or many possible configurations of complex objects. Examples include route-finding algorithms for GPS navigation, robot assembly planning, transportation scheduling, and protein design. Closely related algorithms are used in game-playing systems such as the Deep Blue chess program, which defeated world champion Garry Kasparov in 1997, and AlphaGo, which defeated world Go champion Ke Jie in 2017. In all of these algorithms, the key issue is efficient exploration to find good solutions quickly, despite the vast search spaces inherent in combinatorial problems.

Beginning around 1960, AI researchers and mathematical logicians developed ways to represent logical assertions as data structures as well as algorithms for performing logical inference with those assertions. Since that time, the technology of automated reasoning has advanced dramatically. For example, it is now routine to verify the correctness of VLSI (very large scale integration) chip designs before production and the correctness of software systems and cybersecurity ­protocols before deployment in high-stakes applications. The technology of logic programming (and related methods in database systems) makes it easy to specify and check the application of complex sets of logical rules in areas such as insurance claims processing, data system maintenance, security access control, tax calculations, and government benefit distribution. Special-purpose reasoning systems designed to reason about actions can construct large-scale, provably correct plans in areas such as logistics, construction, and manufacturing. The most visible application of logic-based representation and reasoning is Google’s Knowledge Graph, which, as of May 2020, holds five hundred billion facts about five billion entities and is used to answer directly more than one-third of all queries submitted to the Google search engine.7

....MUCH MORE