Saturday, April 30, 2016

"Quantum entanglement is thought to be one of the trickiest concepts in science, but the core issues are simple..."

From Quanta Magazine:

...And once understood, entanglement opens up a richer understanding of concepts such as the “many worlds” of quantum theory.
An aura of glamorous mystery attaches to the concept of quantum entanglement, and also to the (somehow) related claim that quantum theory requires “many worlds.” Yet in the end those are, or should be, scientific ideas, with down-to-earth meanings and concrete implications. Here I’d like to explain the concepts of entanglement and many worlds as simply and clearly as I know how.
I.
Entanglement is often regarded as a uniquely quantum-mechanical phenomenon, but it is not. In fact, it is enlightening, though somewhat unconventional, to consider a simple non-quantum (or “classical”) version of entanglement first. This enables us to pry the subtlety of entanglement itself apart from the general oddity of quantum theory.
Entanglement arises in situations where we have partial knowledge of the state of two systems. For example, our systems can be two objects that we’ll call c-ons. The “c” is meant to suggest “classical,” but if you’d prefer to have something specific and pleasant in mind, you can think of our c-ons as cakes.
Our c-ons come in two shapes, square or circular, which we identify as their possible states. Then the four possible joint states, for two c-ons, are (square, square), (square, circle), (circle, square), (circle, circle). The following tables show two examples of what the probabilities could be for finding the system in each of those four states.
Olena Shmahalo/Quanta Magazine
We say that the c-ons are “independent” if knowledge of the state of one of them does not give useful information about the state of the other. Our first table has this property. If the first c-on (or cake) is square, we’re still in the dark about the shape of the second. Similarly, the shape of the second does not reveal anything useful about the shape of the first.

On the other hand, we say our two c-ons are entangled when information about one improves our knowledge of the other. Our second table demonstrates extreme entanglement. In that case, whenever the first c-on is circular, we know the second is circular too. And when the first c-on is square, so is the second. Knowing the shape of one, we can infer the shape of the other with certainty.
The quantum version of entanglement is essentially the same phenomenon — that is, lack of independence. In quantum theory, states are described by mathematical objects called wave functions. The rules connecting wave functions to physical probabilities introduce very interesting complications, as we will discuss, but the central concept of entangled knowledge, which we have seen already for classical probabilities, carries over....
...MORE