New method uses machine learning to extrapolate features from thermal images.
Here's the US Army press release:It’s no mean feat for a computer to identify an individual’s face in daylight. The process involves precisely measuring a photograph — eye size, distance from nose to mouth, etc. — adjusting the distances for three dimensions, and searching a database for a match. But to do it at night, when all you have is far lower-resolution thermal images, the Army Research Lab used a technique that allows software to mimic the human brain.Our brains “see” by extrapolating a picture from a relatively small amount of sensory data, filtered through the eye. The brain uses several times more neuronal mass to construct images from visual data than the eye does collecting the data.
The Army researchers saw a parallel with thermal images. Such images show what parts of the face are hotter and cooler, but generally contain fewer data points than a comparable optical image from a camera, making it hard to pick out distinct features. So they set up a convolutional neural network, or CNN, a deep-learning method that uses specific nodes similar to the brain’s, and set it to infer faces from limited data.
The method that the researchers use breaks a thermal picture of a face into specific regions and then compares them to an optical image of the same face. The network estimates where key features are in the thermal image in relation to the conventional image. The network’s final product is something like a police sketch — not a perfect match, but with enough overlap in key points to make a high-certainty match....MORE
Army develops face recognition technology that works in the dark