Monday, July 16, 2012

How Does the Evolution of the 2012/13 El Niño Stack Up Against the Others

The 82/83 and 97/98 events were the strongest of the 20th century with Sea Surface Temperature anomalies of 9–18 °F.
From Bob Tisdale's Climate Observations:
How Does the Evolution of the 2012/13 El Niño Stack Up Against the Others since 1982?
In addition to the title discussion, this post will serve as the Mid-July 2012 Sea Surface Temperature Anomaly Update. It also includes a status update on my book about El Niño-Southern Oscillation (ENSO).

COMPARISON OF THE EVOLUTIONS OF EL NIÑO EVENTS
NINO3.4 sea surface temperature anomalies (a commonly used ENSO index) have been above the +0.5 deg C threshold of an El Niño for 4 weeks. While it’s far from an “official” El Niño, it appears that it’s likely to become one. Let’s see how the 2012/13 El Niño is evolving compared to past El Niño events. Figure 1 compares the weekly NINO3.4 sea surface temperature anomalies for each El Niño event since 1982, starting with the first week in January of those years. The 2012 data is in red, using a greater weighting. The first thing that stands out in the graph is how there really is nothing typical about the evolution of El Niño events. Five started from ENSO-neutral conditions; that is, with NINO3.4 sea surface temperature anomalies between -0.5 and +0.5 deg C. Five, including the current one, started from La Niña conditions, with the NINO3.4 sea surface temperatures cooler than -0.5 deg C. And there’s the outlier, the 1987/88 portion of the 2-year 1986/87/88 El Niño. Other than having the coolest NINO3.4 sea surface temperature anomalies at one point, there’s nothing remarkable about the evolution of the NINO3.4 sea surface temperature anomalies this year.


Figure 1


Figure 2 compares the evolution of the El Niño events that started from La Niña conditions. This year’s NINO3.4 sea surface temperature anomalies had been tracking along at the pace of the most recent El Niño, the one that occurred in 2009/10, until recently. Over the past two weeks, NINO3.4 sea surface temperature anomalies have been cooling.


Figure 2

NINO3.4 sea surface temperature anomalies appear as though they’re being suppressed by the cooler-than-normal waters being circulated southward from the North Pacific, which should be feedback from the back-to-back La Niña events.
...MORE