Saturday, December 26, 2015

Whatever Happened To The Class Of 2015 Breakthrough Technologies?

From MIT's Technology Review:

10 Breakthrough Technologies of 2015: Where Are They Now?
In February we chose our 10 Breakthrough Technologies of 2015—here’s how they have advanced since.  
Each year MIT Technology Review selects 10 emerging technologies that we believe will remake the world. Here’s how this year’s picks got closer to reality over the past 10 months.

Magic Leap
When Rachel Metz of MIT Technology Review saw the four-armed blue monster, she knew Magic Leap’s technology was something special. The company is working on a headset that can make you see virtual 3-D objects blended seamlessly into the real world. Magic Leap doesn’t talk much about its technology or strategy. But we have learned that the company is working on silicon chips that process light and is inviting developers to create content for the headset, which does not yet have a public release date. Microsoft is working on a similar headset scheduled for a limited release early next year. Comparing demonstrations of the competing technologies suggested that both projects have amazing potential.

Nano Architecture
Engineering the structure of metals and ceramic materials at the nanoscale can give them superpowers that might transform how we build just about everything. They can become incredibly flexible, strong, and extremely light all at the same time, and gain the ability to spring back into shape after being crushed flat. In September, the CalTech lab of Julia Greer, which has pioneered this idea, reported new records for the strength and resilience of such materials. But as she told MIT Technology Review’s EmTech conference in Cambridge in November, making these materials practical still requires figuring out ways to make them in larger quantities.

Car-to-Car Communication
The roads would be safer if nearby vehicles automatically shared details of their speed, direction, and other information over wireless links. This year Mercedes-Benz confirmed that its version of that technology will appear in 2017 E-Class models going on sale next year, and General Motors was reported to be putting car-to-car communication in the 2017 Cadillac CTS sedan. Leading Chinese car manufacturer Changan has been testing the technology at its Michigan research center, and says it may appear in its vehicles in 2018. U.S. transportation secretary Anthony Foxx said in May that he was accelerating work on rules that would require car-to-car communication technology on all new vehicles.

Project Loon
Alphabet continued testing its giant helium balloons intended to widen Internet access in 2015. In October the company signed an agreement with the government of Indonesia to give the technology its biggest test yet. In 2016 cellular networks serving the country’s 250 million people will begin to integrate the balloons into their networks, acting as extra cellular towers floating in the stratosphere. In India, however, the planned Loon rollout reportedly hit roadblocks in communications technology and security late in the year. Alphabet’s balloon team has also begun collaborating with Facebook, which has plans to use high-altitude drones for cheap Internet access.

Liquid Biopsy
Just a vial or two of blood can reveal a wealth of information about a person’s cancer, developing fetus or transplanted organ. “Foreign” cells in the body shed fragments of DNA into the blood that can be read thanks to advances in sequencing technology. Liquid biopsies are now becoming widely used, but their power and effectiveness is still not fully understood. Many expectant mothers have blood tests to check their fetus’ chromosomes, but they sometimes reveal undiagnosed cancers, too. And although liquid biopsies for cancer have become common, the evidence they are improving outcomes/treatment is so far equivocal.

Megascale Desalination
There isn’t enough fresh water in the world to meet the needs of the world’s growing population, but technology that removes the salt from seawater has gotten much more efficient. This year a new “megascale” desalination plant that uses a technique called reverse osmosis ramped up to full capacity in Israel. It is capable of producing 627,000 cubic meters of water a day, at much lower prices than previous plants thanks to advances in engineering and materials. A new plant built on similar technology recently opened in Carlsbad, California, north of San Diego. It is expected to produce over 200,000 cubic meters of water a day, estimated to take care of 7 percent of San Diego County’s supply....