Wednesday, May 15, 2013

"Life in the City Is Essentially One Giant Math Problem"

 
From Smithsonian Magazine:
Glen Whitney stands at a point on the surface of the Earth, north latitude 40.742087, west longitude 73.988242, which is near the center of Madison Square Park, in New York City. Behind him is the city’s newest museum, the Museum of Mathematics, which Whitney, a former Wall Street trader, founded and now runs as executive director. He is facing one of New York’s landmarks, the Flatiron Building, which got its name because its wedge- like shape reminded people of a clothes iron. Whitney observes that from this perspective you can’t tell that the building, following the shape of its block, is actually a right triangle—a shape that would be useless for pressing clothes—although the models sold in souvenir shops represent it in idealized form as an isosceles, with equal angles at the base. People want to see things as symmetrical, he muses. He points to the building’s narrow prow, whose outline corresponds to the acute angle at which Broadway crosses Fifth Avenue.

“The cross street here is 23rd Street,” Whitney says, “and if you measure the angle at the building’s point, it is close to 23 degrees, which also happens to be approximately the angle of inclination of the Earth’s axis of rotation.”

“That’s remarkable,” he is told.

“Not really. It’s coincidence.” He adds that, twice each year, a few weeks on either side of the summer solstice, the setting sun shines directly down the rows of Manhattan’s numbered streets, a phenomenon sometimes called “Manhattanhenge.” Those particular dates don’t have any special significance, either, except as one more example of how the very bricks and stones of the city illustrate the principles of the highest product of the human intellect, which is math.

Cities are particular: You would never mistake a favela in Rio de Janeiro for downtown Los Angeles. They are shaped by their histories and accidents of geography and climate. Thus the “east-west” streets of Midtown Manhattan actually run northwest-southeast, to meet the Hudson and East rivers at roughly 90 degrees, whereas in Chicago the street grid aligns closely with true north, while medieval cities such as London don’t have right-angled grids. But cities are also, at a deep level, universal: the products of social, economic and physical principles that transcend space and time. A new science—so new it doesn’t have its own journal, or even an agreed-upon name—is exploring these laws. We will call it “quantitative urbanism.” It’s an effort to reduce to mathematical formulas the chaotic, exuberant, extravagant nature of one of humanity’s oldest and most important inventions, the city.

The systematic study of cities dates back at least to the Greek historian Herodotus. In the early 20th century, scientific disciplines emerged around specific aspects of urban development: zoning theory, public health and sanitation, transit and traffic engineering. By the 1960s, the urban-planning writers Jane Jacobs and William H. Whyte used New York as their laboratory to study the street life of neighborhoods, the walking patterns of Midtown pedestrians, the way people gathered and sat in open spaces. But their judgments were generally aesthetic and intuitive (although Whyte, photographing the plaza of the Seagram Building, derived the seat-of-the-pants formula for bench space in public spaces: one linear foot per 30 square feet of open area). “They had fascinating ideas,” says Luís Bettencourt, a researcher at the Santa Fe Institute, a think tank better known for its contributions to theoretical physics, “but where is the science? What is the empirical basis for deciding what kind of cities we want?” Bettencourt, a physicist, practices a discipline that shares a deep affinity with quantitative urbanism. Both require understanding complex interactions among large numbers of entities: the 20 million people in the New York metropolitan area, or the countless subatomic particles in a nuclear reaction....MUCH MORE
HT: God Plays Dice