The 2012 Atlantic hurricane season begins: what is in store?
It's June 1st, and the 2012 Atlantic hurricane season is officially underway. With two early season storms, Alberto and Beryl, having already come and gone, this year's season has gotten off to a near-record early start. Since reliable record keeping began in 1851, only the hurricane seasons of 1908 and 1887 had two named storms form so early in the year. So, will this early pace continue? What will this year's hurricane season bring? Here are my top five questions for the coming season:---------------------------------------------------------------------------------------------------------------
1) All of the major seasonal hurricane forecasts are calling for a near-average season, with 10 - 13 named storms. Will these pre-season predictions pan out?
2) How will the steering current pattern evolve? Will the U.S. break its six-year run without a major hurricane landfall, the longest such streak since 1861 - 1868?
3) Will the 420,000 people still homeless in Haiti in the wake of the January 2010 earthquake dodge a major tropical cyclone flooding disaster for the third consecutive hurricane season?
4) How will new National Hurricane Center director Rick Knabb fare in his inaugural season?
5) Will the Republican National Convention, scheduled to occur in Tampa during the last week of August, get interrupted by a tropical storm or hurricane?
Quick summary of the early-season atmosphere/ocean conditions in the Atlantic
Strong upper-level winds tend to create a shearing force on tropical storms (wind shear), which tears them apart before they can get going. In June, two branches of the jet stream, the polar jet to the north, and a subtropical jet to the south, typically bring high levels of wind shear to the Atlantic. The southern subtropical jet currently lies over the Caribbean, and is expected to remain there the next two weeks, making development unlikely in the Caribbean. Between the subtropical jet to the south and the polar jet to the north, a "hole" in the wind shear pattern formed during May off the Southeast U.S. coast, and this is where both Alberto and Beryl were able to form. Their formation was aided by the fact ocean temperatures off the U.S. East coast are quite warm--about 1 - 2°C above average. A wind shear "hole" is predicted to periodically open up during the next two weeks off the Southeast U.S. coast, making that region the most likely area of formation for any first-half-of-June tropical storms. However, none of the reliable computer models are predicting tropical storm formation in the Atlantic between now and June 8.
May ocean temperatures in the tropical Atlantic are approximately the third coolest we've seen since the current active hurricane period began in 1995. SSTs in the Main Development Region (MDR), between 10 - 20°N latitude, from the coast of Africa to the Central America, were about 0.35°C above average in May, according to NOAA's Coral Reef Watch. Tropical storm activity in the Atlantic is strongly dependent on ocean temperatures in this region, and the relatively cool temperatures imply that we should see a delayed start to development of tropical waves coming off the coast of Africa and moving into the Caribbean, compared to the period 1995 - 2011. An interesting feature of this month's SST departure from average image (Figure 2) is the large area of record-warm ocean temperatures off the mid-Atlantic and New England coasts, from North Carolina to Massachusetts. Ocean temperatures are 3 - 5°C (5 - 9°F) above average in this region. This makes waters of much above-average warmth likely to be present during the peak part of hurricane season, increasing the chances for a strong hurricane to affect the mid-Atlantic and New England coast.
The upper-level jet stream pattern is critical for determining where any tropical storms and hurricanes that form might go. Presently, these "steering currents" are in a typical configuration for June, favoring a northward or northeastward motion for any storms that might form. However, steering current patterns are fickle and difficult to predict more that seven days in advance, and there is no telling how the steering current pattern might evolve this hurricane season. We might see a pattern like evolved during 2004 - 2005, with a westward-extending Bermuda High, forcing storms into Florida and the Gulf Coast. Or, we might see a pattern like occurred during 2010 - 2011, with the large majority of the storms recurving harmlessly out to sea. That's about as helpful as a weather forecast of "Sho' enough looks like rain, lessen' of course it clears up," I realize.
Figure 2. Departure of sea surface temperature from average for May 31, 2012. Image credit: NOAA/NESDIS.
Colorado State predicts a slightly above-average hurricane season
A slightly above-average Atlantic hurricane season is on tap for 2012, according to the seasonal hurricane forecast issued June 1 by Dr. Phil Klotzbach and Dr. Bill Gray of Colorado State University (CSU). The CSU team is calling for 13 named storms, 5 hurricanes, and 2 intense hurricanes, and an Accumulated Cyclone Energy (ACE) of 80, which is 87% of average. This is very close to the 1981 - 2010 average of 12 named storms, 6 hurricanes, and 3 major hurricanes. Hurricane seasons during the active hurricane period 1995 - 2011 have averaged 15 named storms, 8 hurricanes, and 4 major hurricanes, with an ACE index 153% of the median. The forecast calls for an average chance of a major hurricane hitting the U.S., both along the East Coast (28% chance, 31% chance is average) and the Gulf Coast (28% chance, 30% chance is average). The risk of a major hurricane in the Caribbean is also average, at 39% (42% is average.) The CSU teams expects we will have a weak El Niño develop by the peak of this year's hurricane season in September, which will cut down on this year's activity by increasing wind shear over the Tropical Atlantic. However, there is considerable uncertainty in this outlook....MUCH MORE