Friday, May 7, 2010

Gulf of Mexico: "How oil might affect a hurricane" (Here is where we Juxtapose) BP

From Wunderblog:
There's no major changes to the forecast for the Gulf of Mexico oil spill. As I discussed in yesterday's post, on Sunday, the winds will begin increasing and shifting to the southeast. The latest run of the GFS model shows that this will be a week-long period of southeast winds, with wind speeds at times reaching 20 - 25 knots. These winds will threaten to bring oil to a large portion of the Louisiana coast, including regions of the central Louisiana coast west of the mouth of the Mississippi River. The Mississippi and Alabama coasts will also be at risk next week, but the risk to the Florida Panhandle is lower. Yesterday's post also has the long-range outlook for oil to get into the Loop Current and spread to the Florida Keys and beyond.

What will oil in the Gulf of Mexico do to a hurricane?
With hurricane season fast approaching and the oil spill in the Gulf of Mexico likely to still be around once hurricane season starts in June, we need to ask, how will oil affect any hurricanes that might traverse over the spill? And how might a hurricane's wind and storm surge affect the spill? Let's consider the first of those questions today.

From the time of the ancient Greeks to the days of the wooden ships and iron men, mariners dumped barrels of oil onto raging seas to calm them during critical moments of violent storms (Wyckoff, 1886.) Oil does indeed calm wind-driven waves, thanks to the reduction in surface tension of the water that oil causes. Ripples with a wavelength shorter than 17 mm are affected by surface tension, and these ripples then cause a feedback that reduces the height of larger waves with longer wavelengths (Scott, 1986.) The reduction of surface tension also impacts the flow of air above the water, and reduces the amount of sea spray thrown into the air, both of which could affect the wind speed. Oil also damps waves by forming a thick, viscous film at the top of the water that resists water motion (Scott, 1999.) Oil also helps calm raging seas by switching off of the wind energy input needed by the wave to break. This occurs because the surface film of oil prevents the generation of ripples on the exposed crests of the waves, and this smoother surface makes the wind less able to grab onto the wave and force it to break.

So, what would happen to a hurricane that encounters a large region of oily waters? A 2005 paper by Barenblatt et al. theorize that spray droplets hurled into the air by a hurricane's violent winds form a layer intermediate between air and sea made up of a cloud of droplets that can be viewed as a "third fluid". The large droplets in the air suppress turbulence in this "third fluid", decrease the frictional drag over the ocean surface, and accelerate the winds. According to this theory of turbulence, oil dumped on the surface of the ocean would reduce the formation of wind-whipped spray droplets, potentially calming the winds. The authors propose spraying oil on the surface of the ocean to reduce the winds of a hurricane. However, the turbulence theory championed by Barenblatt et al. has been challenged by other scientists. In a 2005 interview with Newscientist magazine, turbulence expect Julian Hunt at University College London, UK, remarks, "I am very doubtful about this approach." Hunt studies turbulence both theoretically and in the laboratory, and believes that the high wind speeds in a hurricane are not caused by sea spray. In an article he wrote for the Journal of Fluid Dynamics, Hunt suggests that variations in the turbulence between different regions of the hurricane cause sharp jumps in wind speed, which are responsible for the hurricane's strongest winds.

Oil reduces evaporation
Hurricanes are sustained by the heat liberated when water vapor that has evaporated from warm ocean waters condenses into rain. If one can reduce the amount of water evaporating from the ocean, a decrease in the hurricane's strength will result. Oil on the surface of the ocean will act to limit evaporation, and could potentially decrease the strength of a hurricane. However, if the oil is mixed away from the surface by the strong winds of a hurricane, the oil will have a very limited ability to reduce evaporation. According to a 2005 article in Popular Science magazine, Dr. Kerry Emanuel of MIT performed some tests in 2002 to see if oil on the surface of water could significantly reduce evaporation into a hurricane. He found that the slick quickly dissipated under high wind conditions that generated rough seas.

Figure 1. A comparison of the size of 2008's Hurricane Gustav with the size of the Gulf oil spill. The spill is only about 60 miles in diameter, while a hurricane like Gustav is typically 400+ miles in diameter.