Monday, May 12, 2008

Commercialization of Nano + Solar Photovoltaic Technologies

From Nanotechnology Now:

Abstract:
This column focuses on issues of interest to entrepreneurs, investors, and researchers in the nano + solar space; (1) listing of some of upcoming conferences relevant to nano + solar (2) overview of commercial considerations for any nano + solar technology (3) overview of some key technologies currently in early stages of commercialization. In my early July column I will review all the new nanotechnologies and companies related to solar that are announced in the year ending June 30, 2008 - and there are many.

May 9th, 2008

This column runs monthly and focuses on nanotechnology + solar PV conferences, commercialization, companies, fundings, issues, and technology. All quotations and sources are referenced and all opinions are the opinions of the columnist & not of Nanotechnology-Now.

To my many readers I apologize for the delay in updating you on nanotechnology impacts on more efficient and/or lower cost solar photovoltaic (PV) cells and panels. I am committed to publish another three to four columns this year and appreciate feedback regarding your interests.

We all know that the solar market is hot - growing at some 40% per annum as far as the analyst can project (we have completed projections through 2020, some publicly available reports project to 2025). And most of us know that current solar technologies have a long way to go to achieve "grid parity" electricity production costs or efficiencies in converting photons to electrons at the 68% - 74% theoretical efficiency levels cited by Dr. Martin Green of the University of New South Wales, see slide 17 in an excellent PDF file available on-line that covers current state of the art and the future http://www.tvworldwide.com/events/eqtv/061016/ppt/Martin%20Green.pdf

I should note my own bias in favor of thin film solar PV versus silicon wafer-based solar PV. And a mild bias in favor of Silicon versus more exotic materials. The materials cost and manufacturing cost of thin-film solar is much lower than wafer based and drops much faster than wafer based in large-scale manufacturing. Thin film solar PV appears today to be the only manufacturing approach that can reach "grid parity" levels in the next decade, that is, the same cost for electricity as you pay your electrical utility. And in the long run the supply of Silicon is essentially unlimited, while the supply of Indium, Gallium, and Tellurium has significant limits if Solar is to replace coal, oil, and gas for electricity generation.

I will address three topics in this column that should be of interest to entrepreneurs, investors, and researchers in the nano + solar space; (1) listing of some of upcoming conferences relevant to nano + solar (2) overview of commercial considerations for any nano + solar technology (3) overview of some key technologies currently in early stages of commercialization. In my next column I will review all the new nanotechnologies and companies related to solar that are announced in the year ending June 30, 2008 - and there are many.

(1) Conferences: attending the following conferences will give you access to a wide range of companies, entrepreneurs, technologies, and investors in the nano + solar space. A brief note - nanotechnology enables clean energy / solar and, while solar conferences do not stress the nano theme, many of the companies that present utilize nano to achieve targeted price and performance on nano + solar products....MUCH MORE