Thursday, October 10, 2024

Paris-based baCta Is Using Engineered Bacteria to Grow Natural Rubber and Slash CO2 Emissions

AI-powered synthetic biology is so hot right now.

From TechCrunch, October 10:

The synthetic biology and precision fermentation space is a hotbed of entrepreneurial activity these days. But it’s not every day you come across a startup that’s using genetic engineering to produce natural rubber — a substance that’s challenging to reproduce in a lab because of how long its polymer is.

Paris-based baCta has a proof of concept up and running that uses engineered bacteria (E.coli) to yield natural rubber in vitro. The startup says its method, which relies upon a renewable feedstock — currently it’s using glucose but is aiming to diversify into acetate and carbon — is carbon neutral.

The startup has just bagged €3.3 million (around $3.6 million at current exchange rates) so it can get to work on its next challenge: figuring out how to industrialize its lab-based process and move from producing milligrams of raw material so far into the far greater quantities necessary for other companies to use its rubber to make their own products.

Natural rubber not grown on trees

Around half the world’s rubber is synthetic (i.e. derived from petroleum); the other half (natural rubber) is harvested from the latex-laden sap of Hevea trees. Neither route is great from a sustainability point of view. Though natural rubber might sound more environmentally friendly, it can lead to deforestation if land is cleared to make way for Hevea plantations.

At the same time, with the advent of emissions reporting regulations and the like, manufacturers in Europe and elsewhere are under pressure to find ways to reduce their carbon footprints. So if a raw material’s supply can be greener, and the product is competitively priced, there should be a clear incentive to switch to a bio-engineered version of natural rubber.

BaCta CEO and founder Mathieu Nohet sounds confident that the startup, which was only founded in January 2024, will be able to scale up production of its biosynthesized natural rubber.

He also thinks the approach it’s taken — which involves “synthetic AI enzyme technology that basically lifts scientific barriers and enables polymerization of rubber inside bacteria,” as he explains it — will allow it to hit a price-point that’s competitive versus the conventional commodity, while offering major reductions in CO2 emissions.

“Having this polymerization mechanism inside the cell enables us to be much more efficient in terms of yield and, ultimately, in terms of cost per kilogram, which means that if we’re able to pull off the mixotrophic approach [i.e. feedstock diversification], we’ll actually be competitive with the commodity at the price that is today.”....

....MUCH MORE

Though pulpwood concessions and palm oil plantations have a greater impact on Borneo's orangutan population - down from 150,000 to 55,000 in the last 25 years, what baCta is doing is probably a good thing for our second-favorite primate.