Saturday, October 8, 2022

"What will it take to recycle millions of worn-out EV batteries?"

 From Knowable Magazine, September 21:

In Nevada and other US states, entrepreneurs are anticipating the coming boom in retired lithium-ion batteries from electric cars and hoping to create a market for recycled minerals 

Thirty miles east of Reno, Nevada, past dusty hills patched with muted blue sage and the occasional injury-lawyer billboard, a large concrete structure rises prominently in the desert landscape. When fully constructed, it will be a pilot for a business that entrepreneurs envision as a major facet of America’s future green economy: lithium-ion battery recycling.

Thirty miles east of Reno, Nevada, past dusty hills patched with muted blue sage and the occasional injury-lawyer billboard, a large concrete structure rises prominently in the desert landscape. When fully constructed, it will be a pilot for a business that entrepreneurs envision as a major facet of America’s future green economy: lithium-ion battery recycling.

Researchers say that figuring out recycling could help to avoid the environmental risks of more mining and a buildup of hazardous battery waste — but reprocessing these batteries and refining the metals they contain for reuse is difficult and costly, and many remain skeptical of how truly circular that supply chain can ever be. “An electric vehicle battery is a very complex piece of technology with a lot of different components in it — so a recycling facility is going to be very complicated,” says Michael McKibben, a geologist at the University of California, Riverside. “In the long run, that’s going to be important, but in the short run, it’s got a ways to go.”

Sourcing specific minerals
To power a car, electrons in the battery move from the negative electrode, the anode, to the positive electrode, the cathode. Typically, the anode is made of copper and graphite, while the cathode consists of a class of compounds called lithium metal oxides — ones that contain lithium plus other metals such as cobalt, manganese and nickel.

All of these metals must be sourced — and recycling alone cannot yet meet market needs. Though the US has numerous copper mines (and obtains a sizable chunk of copper from scrap recycling), nearly all of the other metals in lithium-ion batteries come from mines in other countries. More than 80 percent of global lithium comes from Chile, Australia and China, while more than 60 percent of cobalt comes from the Democratic Republic of Congo....

....MUCH MORE

As noted in the intro to September 14's "Battery Recycling Race Heats Up After Inflation Reduction Act":
I always thought Umicore and Veolia would lead the way but it seems to be the upstarts that are getting the attention (and money)....