That said, we've been pitching materials science as the place to look for an answer for a long time.
It's just sooo darn slow in coming. But keep an eye on the labs.
From the Department of Energy's Idaho National Laboratory via ScienceDaily:
Date: April 21, 2020
Source: DOE/Idaho National Laboratory
Summary:
- Recently, researchers developed a new electrode material for an electrochemical cell that can efficiently convert excess electricity and water into hydrogen. When demand for electricity increases, the electrochemical cell is reversible, converting hydrogen back into electricity for the grid. The hydrogen could also be used as fuel for heat, vehicles or other applications.
While energy sources such as wind and solar are great at producing emissions-free electricity, they depend on the sun and the wind, so supply doesn't always meet the demand. Likewise, nuclear power plants operate more efficiently at maximum capacity so that electricity generation can't be easily ramped up or down to match demand.
Recently, researchers at Idaho National Laboratory helped answer that challenge by developing a new electrode material for an electrochemical cell that can efficiently convert excess electricity and water into hydrogen. When demand for electricity increases, the electrochemical cell is reversible, converting hydrogen back into electricity for the grid. The hydrogen could also be used as fuel for heat, vehicles or other applications.
The results appeared online this week in the journal Nature Communications.
Researchers have long recognized the potential of hydrogen as an energy storage medium, said Dong Ding, a senior staff engineer/scientist and chemical processing group lead at INL.
"The energy storage grand challenge, with its diverse research and development needs, gave rise to more opportunities for hydrogen," said Ding. "We are targeting hydrogen as the energy intermediate to efficiently store energy."
Ding and his colleagues improved one type of electrochemical cell called a protonic ceramic electrochemical cell (PCEC), which uses electricity to split steam into hydrogen and oxygen.
However, in the past, these devices had limitations, especially the fact that they operate at temperatures as high as 800 degrees C. The high temperatures require expensive materials and result in faster degradation, making the electrochemical cells cost prohibitive.....
....MORE
And the reason a breakthrough will probably come out of a research uni or National Lab?
"Fundamentally VCs are risk adverse – they want no risk in the deal,
if we could handle risk we'd be entrepreneurs."
– Victor Westerlind, General Partner at Cleantech VC firm Rockport Capital