Saturday, February 3, 2018

How Amazon Rebuilt Itself Around Artificial Intelligence

From Wired, February 1:

Inside Amazon's Artificial Intelligence Flywheel
How deep learning came to power Alexa, Amazon Web Services, and nearly every other division of the company.
In early 2014, Srikanth Thirumalai met with Amazon CEO Jeff Bezos. Thirumalai, a computer scientist who’d left IBM in 2005 to head Amazon’s recommendations team, had come to propose a sweeping new plan for incorporating the latest advances in artificial intelligence into his division.
He arrived armed with a “six-pager.” Bezos had long ago decreed that products and services proposed to him must be limited to that length, and include a speculative press release describing the finished product, service, or initiative. Now Bezos was leaning on his deputies to transform the company into an AI powerhouse. Amazon’s product recommendations had been infused with AI since the company’s very early days, as had areas as disparate as its shipping schedules and the robots zipping around its warehouses. But in recent years, there has been a revolution in the field; machine learning has become much more effective, especially in a supercharged form known as deep learning. It has led to dramatic gains in computer vision, speech, and natural language processing.

In the early part of this decade, Amazon had yet to significantly tap these advances, but it recognized the need was urgent. This era’s most critical competition would be in AI—Google, Facebook, Apple, and Microsoft were betting their companies on it—and Amazon was falling behind. “We went out to every [team] leader, to basically say, ‘How can you use these techniques and embed them into your own businesses?’” says David Limp, Amazon’s VP of devices and services.

Thirumalai took that to heart, and came to Bezos for his annual planning meeting with ideas on how to be more aggressive in machine learning. But he felt it might be too risky to wholly rebuild the existing system, fine-tuned over 20 years, with machine-learning techniques that worked best in the unrelated domains of image and voice recognition. “No one had really applied deep learning to the recommendations problem and blown us away with amazingly better results,” he says. “So it required a leap of faith on our part.” Thirumalai wasn’t quite ready—but Bezos wanted more. So Thirumalai shared his edgier option of using deep learning to revamp the way recommendations worked. It would require skills that his team didn’t possess, tools that hadn’t been created, and algorithms that no one had thought of yet. Bezos loved it (though it isn’t clear whether he greeted it with his trademark hyena-esque laugh), so Thirumalai rewrote his press release and went to work.

Thirumalai was only one of a procession of company leaders who trekked to Bezos a few years ago with six-pagers in hand. The ideas they proposed involved completely different products with different sets of customers. But each essentially envisioned a variation of Thirumalai’s approach: transforming part of Amazon with advanced machine learning. Some of them involved rethinking current projects, like the company’s robotics efforts and its huge data-center business, Amazon Web Services (AWS). Others would create entirely new businesses, like a voice-based home appliance that would become the Echo.

The results have had an impact far beyond the individual projects. Thirumalai says that at the time of his meeting, Amazon’s AI talent was segregated into isolated pockets. “We would talk, we would have conversations, but we wouldn’t share a lot of artifacts with each other because the lessons were not easily or directly transferable,” he says. They were AI islands in a vast engineering ocean. The push to overhaul the company with machine learning changed that.

While each of those six-pagers hewed to Amazon’s religion of “single-threaded” teams—meaning that only one group “owns” the technology it uses—people started to collaborate across projects. In-house scientists took on hard problems and shared their solutions with other groups. Across the company, AI islands became connected. As Amazon's ambition for its AI projects grew, the complexity of its challenges became a magnet for top talent, especially those who wanted to see the immediate impact of their work. This compensated for Amazon's aversion to conducting pure research; the company culture demanded that innovations come solely in the context of serving its customers.

Amazon loves to use the word flywheel to describe how various parts of its massive business work as a single perpetual motion machine. It now has a powerful AI flywheel, where machine-learning innovations in one part of the company fuel the efforts of other teams, who in turn can build products or offer services to affect other groups, or even the company at large. Offering its machine-learning platforms to outsiders as a paid service makes the effort itself profitable—and in certain cases scoops up yet more data to level up the technology even more.

It took a lot of six-pagers to transform Amazon from a deep-learning wannabe into a formidable power. The results of this transformation can be seen throughout the company—including in a recommendations system that now runs on a totally new machine-learning infrastructure. Amazon is smarter in suggesting what you should read next, what items you should add to your shopping list, and what movie you might want to watch tonight. And this year Thirumalai started a new job, heading Amazon search, where he intends to use deep learning in every aspect of the service.
“If you asked me seven or eight years ago how big a force Amazon was in AI, I would have said, ‘They aren’t,’” says Pedro Domingos, a top computer science professor at the University of Washington. “But they have really come on aggressively. Now they are becoming a force.”
Maybe the force.

The Alexa Effect...
...MUCH MORE