"... too far-fetched to be considered."So we distinguish between the magazine and the invited writers and take everything you read by the former with a grain or two of sal.
Editor of Scientific American, in a letter to Robert Goddard about Goddard's idea of a rocket-accelerated airplane bomb, 1940 (German V2 missiles came down on London 3 years later).
"That the automobile has practically reached the limit of its development is suggested by the fact that during the past year no improvements of a radical nature have been introduced."
-Scientific American, Jan. 2 edition, 1909.
From SciAm:
“There are three types of mathematicians, those who can count and those who can’t.”Here are some of Kelvin's boo-boos:
Bad joke? You bet. But what makes this amusing is that the joke is triggered by our perception of a paradox, a breakdown in mathematical logic that activates regions of the brain located in the right prefrontal cortex. These regions are sensitive to the perception of causality and alert us to situations that are suspect or fishy — possible sources of danger where a situation just doesn’t seem to add up.
Many of the famous etchings by the artist M.C. Escher activate a similar response because they depict scenes that violate causality. His famous “Waterfall” shows a water wheel powered by water pouring down from a wooden flume. The water turns the wheel, and is redirected uphill back to the mouth of the flume, where it can once again pour over the wheel, in an endless cycle. The drawing shows us a situation that violates pretty much every law of physics on the books, and our brain perceives this logical oddity as amusing — a visual joke.
The trick that makes Escher’s drawings intriguing is a geometric construction psychologists refer to as an “impossible figure,” a line-form suggesting a three-dimensional object that could never exist in our experience. Psychologists, including a team led by Catya von Károlyi of the University of Wisconsin-Eau Claire, have used such figures to study human cognition. When the team asked people to pick out impossible figures from similarly drawn illustrations that did not violate causality, they were surprised to discover that some people were faster at this than others. And most surprising of all, among those who were the fastest were those with dyslexia.
Dyslexia is often called a “learning disability.” And it can indeed present learning challenges. Although its effects vary widely, children with dyslexia read so slowly that it would typically take them a half a year to read the same number of words other children might read in a day. Therefore, the fact that people who read so slowly were so adept at picking out the impossible figures was a big surprise to the researchers. After all, why would people who are slow in reading be fast at responding to visual representations of causal reasoning?
Though the psychologists may have been surprised, many of the people with dyslexia I speak with are not. In our laboratory at the Harvard-Smithsonian Center for Astrophysics we have carried out studies funded by the National Science Foundation to investigate talents for science among those with dyslexia. The dyslexic scientist Christopher Tonkin described to me his sense of this as a sensitivity to “things out of place.” He’s easily bothered by the weeds among the flowers in his garden, and he felt that this sensitivity for visual anomalies was something he built on in his career as a professional scientist. Such differences in sensitivity for causal perception may explain why people like Carole Greider and Baruj Benacerraf have been able to perform Nobel prize-winning science despite lifelong challenges with dyslexia.
In one study, we tested professional astrophysicists with and without dyslexia for their abilities to spot the simulated graphical signature in a spectrum characteristic of a black hole. The scientists with dyslexia —perhaps sensitive to the weeds among the flowers— were better at picking out the black holes from the noise, an advantage useful in their careers. Another study in our laboratory compared the abilities of college students with and without dyslexia for memorizing blurry-looking images resembling x-rays. Again, those with dyslexia showed an advantage, an advantage in that can be useful in science or medicine.
Why are there advantages in dyslexia? Is it something about the brains of people with dyslexia that predisposes them to causal thinking? Or, is it a form of compensation, differences in the brain that occur because people with dyslexia read less? Unfortunately, the answer to these questions is unknown.
One thing we do know for sure is that reading changes the structure of the brain. An avid reader might read for an hour or more a day, day in and day out for years on end. This highly specialized repetitive training, requiring an unnaturally precise, split-second control over eye movements, can quickly restructure the visual system so as to make some pathways more efficient than the others....MORE
"Radio has no future."Quotes from Mental Floss via "Climateer Investing: 87 Worst Predictions of All Time"
Lord Kelvin, Scottish mathematician and physicist, former president of the Royal Society, 1897.
"Heavier-than-air flying machines are impossible."
Lord Kelvin, 1895.
"X-rays will prove to be a hoax."
-Lord Kelvin, 1883.