Tuesday, October 10, 2017

"A Stanford battery based on sodium may offer more cost-effective storage than lithium"

We've been tracking battery technologies for a long time and if pressed to condense the lessons learned into one sentence it would be: "Scaling up is hard".
That said we keep an eye on developments, as Intel's Andy Grove once said: "Success breeds complacency. Complacency breeds failure. Only the paranoid survive."

From Stanford News Service:
Industrial forecasts predict an insatiable need for battery farms to store renewable energy like solar and wind. Lithium ion batteries may remain tops for sheer performance, but when cost-per-storage is factored in, a Stanford design based on sodium ions offers promise.
By Tom Abate
As a warming world moves from fossil fuels toward renewable solar and wind energy, industrial forecasts predict an insatiable need for battery farms to store power and provide electricity when the sky is dark and the air is still. Against that backdrop, Stanford researchers have developed a sodium-based battery that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost.

Chemical engineer Zhenan Bao and her faculty collaborators, materials scientists Yi Cui and William Chueh, aren’t the first researchers to design a sodium ion battery. But they believe the approach they describe in an Oct. 9 Nature Energy paper has the price and performance characteristics to create a sodium ion battery costing less than 80 percent of a lithium ion battery with the same storage capacity.

“Nothing may ever surpass lithium in performance,” Bao said. “But lithium is so rare and costly that we need to develop high-performance but low-cost batteries based on abundant elements like sodium.”

With materials constituting about one-quarter of a battery’s price, the cost of lithium – about $15,000 a ton to mine and refine – looms large. That’s why the Stanford team is basing its battery on widely available sodium-based electrode material that costs just $150 a ton.

This sodium-based electrode has a chemical makeup common to all salts: It has a positively charged ion – sodium – joined to a negatively charged ion. In table salt, chloride is the positive partner, but in the Stanford battery a sodium ion binds to a compound known as myo-inositol. Unlike the chloride in table salt, myo-inositol is not a household word. But it is a household product, found in baby formula and derived from rice bran or from a liquid byproduct of the process used to mill corn. Crucial to the idea of lowering the cost of battery materials, myo-inositol is an abundant organic compound familiar to industry.

Making it work
The sodium salt makes up the cathode, which is the pole of the battery that stores electrons. The battery’s internal chemistry shuttles those electrons toward the anode, which in this case is made up of phosphorous. The more efficiently the cathode shuttles those electrons toward and backward versus the anode, the better the battery works. For this prototype, postdoctoral scholar Min Ah Lee and the Stanford team improved how sodium and myo-inositol enable that electron flow, significantly boosting the performance of this sodium ion battery over previous attempts. The researchers focused mainly on the favorable cost-performance comparisons between their sodium ion battery and state of the art lithium. In the future they’ll have to look at volumetric energy density – how big must a sodium ion battery be to store the same energy as a lithium ion system.

In addition, the team optimized their battery’s charge-recharge cycle – how efficiently the battery stores electricity coming in from a rooftop solar array, for instance, and how effectively it delivers such stored power to, say, run the house lights at night....MORE
HT: Futurity

Regarding paranoia we noted in relation to NVIDIA, who just today announced the first board capable of being the brains for Level 5 autonomous vehicles, unassailable if any tech position is:

November 21, 2016
Artificial Intelligence: What Could Derail NVIDIA? A Lab in Shenzhen; A Basement in Moscow; An Office in Bristol (NVDA)